Pyridine as an C-Orthometalated and σ -N-Complexed Heteroarene Ligand on the Surface of a Co₃ Cluster

Jörg J. Schneider^[+]

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim a.d. Ruhr, Germany

Received September 8, 1994

Key Words: Pyridine, trinuclear cobalt cluster / Heteroarene ligand, σ -N-complexed

Reaction of $[(\eta^5-Cp^*)(acac-O,O')Co]$ (1) with potassium metal in pyridine results in reductive ligand transfer of the acac ligand to potassium and formation of a mixture of two organocobalt complexes which can be separated from each other by chromatography. Besides a mononuclear complex con-

Molecular metal cluster compounds containing μ -arene ligands in face-bridging modes are now well established in organometallic cluster chemistry since almost a decade or so^[1].

These compounds may serve as unique model compounds to mimic the metal-surface/arene analogy established by the pioneering work of Muetterties^[2], Rhodin^[3], Somorjay^[4] and co-workers.

Concerning the synthesis of those compounds containing various arene ligands on the surface of a M_3 cluster unit, either the arene can be complexed on a preformed M_3L_3 cluster^[5] or the M_3 cluster core can be build up stepwise on the surface of the arene^[6]. Both ways work equally well and give rise to a variety of new and unusual M_3 systems with μ -(η : η : η : η -arene) ligands. In this communication is reported for the first time on the synthesis, spectroscopic, and in part structural characterization of a μ -pyridine ligand stabilized on a Co₃ cluster core.

Results and Discussion

Reductive ligand degradation of the mononuclear 17-VE cobalt complex [(η^5 -Cp*)(acac-*O*, *O'*)Co] (1) with potassium metal in pyridine as solvent results in the formation of two organocobalt complexes (Scheme 1). They can be separated from the crude reaction mixture by chromatography. In 32% yield [(η^5 -Cp*)(1,2,3,4,5pentamethyl- η^4 -cyclopentadiene)Co] (2)^[7] was isolated as red crystals. In 30% yield brown crystals of [{(η^5 -Cp*)Co}_3-\mu-(C_5H_4N)] (3) were obtained as the second zone from the chromatography. Thermally, these crystals split off small amounts of [(η^5 -Cp*)_2Co] by sublimation at about 150 °C/10⁻³ Torr as identified by mass spectroscopy (*m*/*z*: 329 [M⁺]). By raising the temperature of the sample probe to <160°C the [M⁺] peak of 3 (*m*/*z*: 661) could be observed from the same sample.

Compound 3 exhibits ¹H-NMR resonances typical of an *o*-metalated pyridine ligand. The signal of the α proton of the pyridine ring in 3 is shifted downfield to $\delta = 8.30$ compared to free pyridine taining no pyridine unit the trinuclear cobalt cluster $[{(\eta^5-Cp^*)-Co}_3-\mu-pyridine]$ (3) is formed in a cyclometalation reaction in 57 % yield. The pyridine ligand in 3 is located on one edge of the Co₃ core according to the spectroscopic data and a preliminary X-ray crystal structure analysis.

 $(\Delta \delta = -0.20)$. A hydridic resonance at $\delta = -24.3$ in the ¹H-NMR spectrum demonstrates that the second α proton of the pyridine ring is lost during this *o*-metalation reaction, but is still located on the metal core of the cluster. The IR spectrum of **3** with characteristic absorptions at $\tilde{v} = 730$ and 675 cm^{-1} gives additional evidence for an σ -N coordination of the pyridine ligand to an $\{(\eta^5-\text{Cp}^*)\text{Co}\}$ fragment. Examples of this bonding mode, although in mononuclear pyridine complexes, are found in $[(\eta^5-\text{Cp}^*)_2\text{Lu}(C_5H_4\text{N})]^{[8]}$, $[(\eta^5-\text{Cp}^*)_2\text{Y}(C_5H_4\text{N})]^{[9]}$, a couple of $[(\eta^5-\text{Cp})_2\text{Lu}(C_5H_4\text{N})]^{[8]}$, $plexes^{[10]}$, and a number of $[(tBu_3\text{SiO})_3\text{Ta}-(\eta^2-\text{pyridine})]$ complexes^[11]. However, attempts to detect 2-iodopyridine as a degradation product from the reaction of **3** with iodine^[10] failed and resulted in complete degradation of the cluster and formation of $[(\eta^5-\text{Cp}^*)\text{CoI}_2]^{[12]}$. The origin of the hydridic H in the ¹H-NMR

Chem. Ber. 1995, 128, 321-322 © VCH Verlags

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1995

0009-2940/95/0303-0321 \$ 10.00+.25/0

^[*] New address: Institut für Anorganische Chemie der Universität/ GH-Essen, Universitätsstraße 5-7, D-45117 Essen, Germany. J. J. S. is grateful to the *Deutsche Forschungsgemeinschaft* for a Heisenberg Fellowship and the *Fonds der Chemischen Industrie* for additional financial support.

experiment from the pyridine ring and the pyridine σ -N coordination mode in 3 are furthermore independently confirmed by the synthesis of the perdeuterated derivative $[D_5]$ -3 (41% isolated yield) which can be prepared along with the monodeuterated $[D_1]$ -2 (30%) isolated yield) in the same manner as described for 2 and 3 by the reaction of 1 with potassium metal in an excess of [D₅]pyridine. Absence of the resonance at $\delta = -24.3$ in the ¹H-NMR spectrum and a characteristic shift of the pyridine ring stretch to lower wave numbers in the IR spectrum of [D₅]-3 as compared to 3 strongly supports the hypothesis of an C-ortho-metalated and σ -N-complexed pyridine ring.

Results of a preliminary X-ray crystal structure determination of $3^{[13]}$ reveal a trinuclear { $(\eta^5-Cp^*)Co$ } cluster core as shown in Scheme 1. The pyridine ring lies over one edge of the Co₃ triangle.

According to these and the spectroscopic results as well as the diamagnetism derived from the ¹H-NMR experiment the pyridine ligand in 3 acts as three-electron donor through a σ -N and σ -C bond of the ring to the Co₃ core resulting in an overall electron cluster count of 46 VE for 3. The unusual coordination mode of the pyridine ligand in 3 might disrupt the aromaticity of the heteroarene and therefore distort its geometry to a significant extent which should be of further interest. However, from the experimental and spectroscopic data presently at hand it is obvious that in 3 pyridine is complexed in a hitherto new and unprecedented bonding mode on the surface of a Co₃ cluster. As it was pointed already out^[11] for monometallic species with n-NC-bound pyridine ligands, clusters like 3 may also be relevant in C-H bond activation and related pyridine C- α functionalizations^[14].

Experimental

All reactions were carried out under argon by using Schlencktype glassware and techniques. Solvents were dried and distilled under argon prior to use. Al₂O₃ was activated by heating at 180°C/ 10^{-3} Torr for several days and stored under argon prior to use.

Synthesis of 2 and 3: To a solution of 3.8 g (13 mmol) of 1 in 150 ml of pyridine 500 mg (13 mmol) of K was added in pieces. Treatment of this mixture for 10 min in an ultrasonic cleaning bath resulted in a fine suspension of the metal in the red pyridine solution of 1. After stirring for 8 d all K had dissolved. All volatile compounds were removed in vacuo, and the oily residue was extracted with 150 ml of pentane and filtered to remove [K(acac)]. Removal of the pentane from the extract and dissolution of the residue in a minimum amount of THF was followed by adsorption of the obtained solution on Al₂O₃. Evaporization of the THF and chromatography of the Al₂O₃/crude reaction residue on Al₂O₃ (eluant: pentane) afforded two fractions; 460 mg (1.4 mmol, 32%) of 2 as red crystals (recrystallized from ether at -30° C); (eluant: pentane/ether, 1:1): 3; brown crystals (1.6 g, 2.46 mmol, 57%). - 2: identical spectroscopic data as reported^[7]. - 3: ¹H NMR (400 MHz, 27°C, [D₆]benzene) $\delta = -24.3$ (s, 1H), 1.95 (s, 45H, Cp*), 6.25 (td, 1H, p-H), 6.39 (dd, 1h, m-H), 7.82 (dt, 1H, m-H), 8.30 (dt, 1 H, o-H). – IR (KBr): $\tilde{v} = 3075 \text{ cm}^{-1}$ (w, py), 2850, 1370, 1020 (s, all Cp*), 730 (s, py), 675 (m, py). - MS (EI, 70 eV), m/z (%): $855 (>1) [M^+ + Cp^*Co], 661 (31) [M^+], 578 (24), 442 (18),$ 329 (100), 315 (63), 79 (11). - C₃₅H₅₀Co₃N (661.6): calcd. C 63.54, H 7.62, Co 26.72, N 2.12; found C 64.10, H 8.39, Co 24.71, N 1.39.

Synthesis of [D1]-2 and [D5]-3: As described for 2 and 3 the deuterated compounds were prepared in an analogous manner from 1 and potassium metal in 30 and 41% yield, respectively, by using 30 ml of $[D_5]$ pyridine (30-fold excess with respect to 1) as solvent. Unreacted [D₅]pyridine was recovered by vacuum condensation. Further purification was as described for 2 and 3. - Mixture of [D₁]-2 (12%) and 2 (88%): MS (EI, 70 eV), m/z (%): 331 (3) [[D₁]- M^+], 330 (10), 329 (4), 317 (5), 316 (41) ($[D_1]-M^+ - CH_3$), 315 (100). - [D₅]-3: MS (EI, 70 eV), m/z (%): 860 (43) [M⁺ + Cp*Co], 666 (6) $[M^+]$, 634 (17), 329 (100), 84 (3). $-{}^{1}H$ NMR (400 MHz, 27°C, [D₆]benzene): $\delta = 2.01$ (br. s, 45 H, Cp*). – IR (KBr): $\tilde{v} =$ 2900 cm⁻¹, 2850 (s, all Cp*), 2265, 2280 (m, C-D, py), 1440, 1370, 1070, 1020 (s-m, all Cp*), 698 (s, py), 650 (s, py).

- ^[1] H. Wadepohl, Angew. Chem. 1992, 104, 253; Angew. Chem. Int. Ed. Engl. 1992, 31, 247.
- [2] [2a] E. L. Muetterties, Science 1979, 196, 839. [^{2b]} E. L. Muetterties, Pure Appl. Chem. 1978, 50, 941. [^{2c]} E. L. Muetterties, Angew. Chem. 1978, 90, 577; Angew. Chem. Int. Ed. Engl. 1978, 177545
- 17, 545. ^[3] ^[3a] T. N. Rhodin, G. Ertl (Eds.), The Nature of the Surface Amsterdam. 1979. ^[3b] E. L. Muetterties, T. N. Rhodin, E. Bond, C. F. Bruker, W. Pretzer, Chem. Rev. **1979**, 79, 91.
- [4] [4a] R. F. Lin, G. S. Blackman, M. A. Van Hore, G. A. Somorjai, Act. Crystallogr., Sect. B, 1987, 43, 368. [4b] M. A. Van Hore, R. F. Lin, G. A. Somorjai, Phys. Rev. Lett. 1983, 51, 778. [4c] M. A. Van Hore, R. F. Lin, G. A. Somorjai, J. Am. Chem. Soc. 1986, 108, 2532
- [5] E. G. Bryan, B. F. G. Johnson, J. W. Killand, J. Lewis, M. Mc Partlin, J. Chem. Soc., Chem. Commun. 1976, 25
- [6] H. Wadepohl, K. Büchner, M. Herrmann, H. Pritzkow, Or-ganometallics 1991, 10, 861.
 [7] J. J. Schneider, R. Goddard, S. Werner, C. Krüger, Angew. Cham. 1001, 102, 1145, Angew. Cham. Int. Ed. Engl. 1001, 20
- Chem. 1991, 103, 1145; Angew. Chem. Int. Ed. Engl. 1991, 30, 1124.
- ^[8] P. L. Watson, J. Chem. Soc., Chem. Commun. 1983, 276.
- B. J. Dellman, W. M. Stevels, J. H. Teuben, M. T. Lakin, A. L. Spek, Organometallics 1994, 13, 3881.
- [10] i
- [^{10]} E. Klei, J. H. Teuben, J. Organomet. Chem. 1981, 214, 53.
 [^{11]} [^{11a]} K. J. Covert, D. R. Neithammer, M. C. Zonneryelle, R. E. Lapainte, C. P. Schaller, P. T. Wolcanski, *Inorg. Chem.* 1991, 30, 2494. – ^[11b] J. R. Strickler, M. A. Bruck, D. E. Wigley, *J. Am. Chem. Soc.* 1990, 112, 2814. – ^[11c] D. P. Smith, J. R. Strickler, S. D. Gray, M. A. Bruck, R. S. Holmes, D. E. Wigley, Or-
- ganometallics 1992, 11, 1275. [¹²] [^{12a]} D. M. Roe, P. M. Maitlis, J. Chem. Soc. (A), Chem. Com-mun. 1971, 3173. [^{12b]} R. B. King, Inorg. Chem. 1966, 5, 82.
- [13] Preliminary X-ray structure determination No. IO 1800 per-formed by K. Angermund, MPI für Kohlenforschung, Mülheim a. d. Ruhr, Germany. A complete structure communication will be presented together with further results in this field in the fu-
- ture.
 [^{14]} [^{14a]} P. E. Fanwick, L. M. Kobringer, A. K. Mc Mullen, I. P. Rothwell, J. Am. Chem. Soc. 1986, 108, 8095. [^{14b]} G. Erker, Rothwell, J. Am. Chem. Soc. 1986, Organometallics 1986. T. Mühlenbernd, R. Benn, A. Rufinska, Organometallics 1986, 5, 402. – ^[14c] M. E. Thompson, S. M. Baxter, A. R. Bulls, B. J. Burger, M. C. Nolan, B. D. Santasiero, W. P. Schaefer, J. E. Bercaw, J. Am. Chem. Soc. 1987, 109, 203.

[360/94]